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Investigations from this lab and others have demonstrated the Table 1. Preparation of Oxonia-Cope Prins Substrates

prevalence of 2-oxonia Cope rearrangements in Prins cyclization . @ EtN R, 7 OTBS 0°1023°C
reactions-? In most cases, the 2-oxonia Cope rearrangefiakées ! R RFC-O + Bn T
place in the background and is not directly observable by product R. 6 R R 2 7 08

1 2

analysis! In a few cases, the rearrangement leads to unwanted side

i la—c i i i
react!ons6. Herein, we report a new oxocarbenium ion cascade / o oTBS  iDIBALH ~ OAc OTBS
reactiort-® and cyclization where the 2-oxonia Cope rearrangement Bn ~__R <R
(¢ ! 0 !

is an integral step in the cascade. This oxonia-Cope Prins (OCP)

ii. Ac,0, Pyr

. o . 9 R, DMAP 1 R,
process is efficient and allows for the preparation of tetrahydro-
pyrans with quaternary carbon centers, synthetic targets that are eny R, R, Methosr V99 (%) Product Vield (%)
normally not accessible by Prins cyclization strategies. P P
The strategy for the oxonia-Cope Prins cyclization is outlined Z OAc OTBS
in Figure 1. Thea-acetoxy etherl is a typical substrate for a ! H H A 7 g o %
segment-coupling Prins cyclization except that it contains a silyl 10
enol ether. Treatment with a Lewis acid would generate the / OAc OTBS
oxocarbenium ior2, the normal intermediate for a Prins cyclization. 2 Et H A 86 Bn/;L ~ gt %
As we have shown previouslythe 2-oxonia Cope rearrangement 0 11
is fast, and oxocarbenium ion2 and 3 should be in rapid
equilibrium. Now the enol ether comes into play. As the best ® CHoCH H A 80 /\:L OAc OTBS 92
nucleophile in the system it would cyclize on the oxocarbenium : Bn o XN
ion via conforme# to produce the tetrahydropyrandbé If a chair 12
conformation dominates in the cyclization transition state, then the
configuration of the product should be predictable from the 4 Me Me B - i)\ OAc OTBS )
geometry of the enol ether. Note that there is an apparent inversion Bn o) N
at the secondary ether centerliren route to the C2 position i 13
that arises from the rearrangement and cyclization cascade. The 5 Me  Me A 30 13 -
successful realization of this strategy is described below. Z OAc OTBS
6 (CHy)s B 68 Bn o ~ 93
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Figure 1. 2-Oxonia-Cope rearrangement of the oxocarbeniumicets 16

up the intramolecular cyclization reaction 4f

L L aMethod A: Acid chloride and EN were combined with silyl ketene
The proposed cascade reaction is only practical if the substratesacetal in THF from 0 to 23C. Method B: thea-bromo acetyl bromide
are synthetically accessible. Preparation of the silyl enol ether was treated with zinc dust in THF afC for 30 min, and the ketene solution

substrates is presented in Table 1. Rathke’s strategy was employe?:’is deg%meld bﬁfore ”?E)acromni";_?'or!de W"ZEU.SEO' to generate the
to assemble the targets from ketefesnd the silyl enol ethes.® etene.”Enol ether produced as a 1.5:1 mixturezk isomers.

In Rathke’s procedure, the ketenes were prepared by eliminationhindered face of the ketene. The asymmetric ketene in entry 8 only
of acid chlorides (method A). Method A worked well with  produces a 1.5:1 mixture of silyl enol ethers. Presumably, the facial
unsubstituted and monosubstituted ketenes (entrie®) but led bias of the ketene was insufficient to ensure good selectivity. The
to moderate yields with some disubstituted ketenes (entries 5 andsecond step was a reductive acetylation with DIBAL-H followed
8). Zinc reduction of thex-bromo acid bromides was used to by acetic anhydride treatment that proceeded in uniformly good
produce disubstituted ketenes (method®)ne or the other method  yields! The OCP cyclization substrates were prepared in two steps
worked well and with all of the substrates investigated. The from the silyl ketene aceta.

asymmetric ketenes in entries 2, 3, and 7 led to B)esilyl enol Cyclization of the substrates is illustrated in Table 2. The cascade
ethers selectively, as would be expected by addition to the lesscyclization works remarkably well. We found that TMSOTf was a
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Table 2. Oxonia-Cope Prins Cyclization of Silyl Enol Ether
Substrates

/\j\ OAc OTBS Lewis acid R
2+,
Bn o NAR 2,6-DTBMP o
. R CH,Cly, —78 °C Po N
Lewis acid .
Entry R R, (product ratio) Product Yield (%)
0
1 H H TMSOTE ij\/\ 99
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N
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(e} 17
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2 Et H (1.6:1 eqg/ax) Bfa\)j\/\ 99
N
HOH
0 18
7
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8 CH~CH H (2.1:1 eg/ax) Bn/\:l\[)j\/\ 84
o N
HH
0 19
4 Me Me TMSOTE thj'\/\ 92
Bn
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5 (CH,)s TMSOTf 93
21
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Me., |
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a Chromatography on ENl-deactivated silica gel led to conjugation of
the alkene to produce only th&)¢ethylidene isomer The 1.5:1Z/E
mixture of enol ether isomers led to a 1.2:1 mixture of stereoisomers with
the major isomer shown.

very efficient promoter of the reaction, perhaps because triflate is
not a good nucleophile and does not favor the competing Prins
cyclization of oxocarbenium io. The TMSOTT catalyst produces
two diastereomers in the cyclization of the trisubstituted enol ethers
(entries 2 and 3.) The moderate diastereoselectivity could arise from
enol ethelE/Zisomerization? competing chairboat cyclizations,

or epimerization of the product under the reaction conditions. The
latter possibility was discounted by monitoring the reaction in entry
3 by NMR spectroscopy: the reaction was essentially complete
after 5 min at-=78°C, and the diastereomeric ratio did not chatge.
The E/Z isomerization of the silyl enol ether could not be
demonstrated, but the result was ambigududodest selectivity
between the chair and boat transition states was the likely origin

Scheme 1. Oxonia-Cope Prins Cascade Leads to an Inversion of
Configuration at the C2 Center in the Cyclization

(0] OH
steps steps
o O T
HO” "R A0 A0 R
(S)-24 25 (-)-26
93% ee ca. 2:1 eg/ax R = CH,CH,OTBDPS

The cyclizations described so far used racemic starting material.
The use of optically pure starting mater2gin Scheme 1 produced
optically pure tetrahydropyranorb. Compound25 was reduced
to alcohol26,13 and its configuration was determined by Mosher’s
analysis'® As predicted by the proposed mechanism in Figure 1,
the stereogenic center if9)¢24 was transformed to the inverted
C2 center in compound—)-26. The oxonia-Cope Prins sequence
is stereospecific.

We describe a new method for the synthesis of tetrahydropyra-
none rings based on an oxonia-Cope rearrangement and Prins
cyclization. The reactions proceed in high yield and are stereose-
lective with some substrates. This new method will be useful in
the synthesis of the many natural products that incorporate
tetrahydropyran rings.
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